
Regular posts on all things around automated network & service management

Have you ever wondered?: The similarities and differences between SNMP and Telemetry.
September 28th 2022, Würzburg
For StableNet®, we typically tend to look at telemetry as yet another means by which device attributes and states can be consolidated in an over-arching network management platform. Whether telemetry will eventually be seen as a paradigmatic shift that replaces SNMP has yet to be seen and is too far down the road to even hazard a guess at this point. Instead, we see a successful multi-technology network and service management solution as needing to integrate both standards (although one might argue that there is no standard for telemetry as of yet).
To give ourselves and our readers a deeper understanding, we had an external, IT specialist sit down and give us an overview on his take of just where the differences and similarities lie. We hope you enjoy.
– Dr. David Toumajian, Director of Marketing
What is Simple Network Management Protocol (SNMP)?
The SNMP architecture
The components that make up the SNMP architecture are:
-
- a network management station including a network manager;
- agents;
- master agents;
- Managed components.
Network Management Station – NMS
Agents
Management Information Base – MIB
Object identifier – OID
Theory and logic of the SNMP protocol
Purpose
Protocol Data Unit (PDU)
-
- GET – request the NMS manager to receive data from the device.
- GETNEXT is a request similar to
- GET. The only difference is that the manager requests data that is at the next level of the OID hierarchy in the MIB.
- SET – with this request, the manager changes or assigns new data to the device.
- RESPONSE – a message from the agent sent in response to a request for data.
- TRAP – notification of an event or error that has occurred. The agent sends it immediately after the event occurs without waiting for the manager’s request. The manager does not acknowledge receipt of the message in any way, which can be a problem.
- GETBULK – a request to the agent to retrieve an array of data from the device. It is an improved version of the GETNEXT query.
- INFORM – a message similar to TRAP, but with an acknowledgment of receipt.
SNMP Protocol Versions
Issues with conventional surveillance technology
In network operation, monitoring technology is important for fault detection and performance analysis.
Conventional networks widely use a technology called SNMP.
SNMP is a UDP-based network monitoring technology. The data model is defined in a database called MIB (Management Information Base), and there are standard MIBs common to all vendors and unique extension MIBs.
The SNMP information acquirer is called SNMP Manager, and the information issuer is called SNMP Agent. As information acquisition methods, there are Polling, in which SNMP Manager acquires information on a request basis, and Trap, in which SNMP Agent sends information on a trigger basis.
The following three points can be cited as problems with conventional SNMP.
-
- High-load processing structure
- The complexity of management in a multi-vendor environment
- Limitation of scalability in N-to-N configuration
Network monitoring requires the acquisition of traffic volume and device load information (memory, CPU, temperature, etc.). However, since SNMP polling is request-based, narrowing the interval to obtain high-definition information will increase the CPU load and processing time.
With SNMP, there is a lack of standard MIBs. Therefore, in order to obtain the same information in a multi-vendor environment, it is necessary to specify the extended MIB OID (Object ID) unique to each model which increases management costs.
In summary, SNMP has the following three problems.
-
- Decrease in obtainable information accuracy and loss of real-time performance due to high-load protocol structure
- The complexity of management in a multi-vendor environment due to the lack of standard MIBs
- Scale issues when constructing an N-to-N configuration
Telemetry technology is expected as a monitoring technology to solve these problems.
What is Telemetry?
Telemetry is a next-generation network monitoring technology, and it is being studied and implemented by various companies and standardized by OpenConfig.
Telemetry is generally designed to have three characteristics:
-
- Acquisition of high-definition, real-time information by low-load protocol design compared to SNMP
- Vendor-free information acquisition by OpenConfig
- High scalability due to easy-to-deploy Pub/Sub model design
Based on these characteristics, it is expected to be a technology that can solve the problems of SNMP mentioned in the previous section.
Telemetry employs a data transmission/reception model called the Pub/Sub model.
The Pub/Sub model consists of the following three elements.
-
- Publisher: Publisher (sender). publish a message
- Broker: an intermediary. mediate messages
- Subscriber: Subscriber (recipient). Get and use messages
Advantages of the Pub/Sub model include: (1) message senders and receivers do not need to recognize each other directly and are asynchronous and loosely coupled; One of the reasons is its large scale. Information is managed by an attribute called Topic, and Publishers/Subscribers send/receive data by specifying the Topic.
Publisher
A Publisher is the publisher of a message and consists of three elements:
-
- Network equipment to be monitored
- Transport part that connects the monitored device and the Collector
- Collector to receive data from Publisher.
As concepts related to monitored devices, I will explain the information model and the classification of connection methods.
There are mainly two types of device information models: OpenConfig and vendor native. OpenConfig is a network configuration model that is being standardized assuming vendor-neutral use and is defined according to YANG. On the other hand, vendor-native is an information model specific to each product. It generally has better support than OpenConfig and tends to have a wealth of information that can be handled.
The information issued by the device is specified in advance by a data path called Sensor-Path. And it issues messages at predetermined intervals and sends them to the Collector.
Broker
Subscriber
Background of Telemetry
Telemetry is an old term coined from Tele = Remote and Metry = Measure. In that sense, SNMP and xFlow can also be considered a type of Telemetry. But it may be easier to understand if you understand “Telemetry” introduced in this column as the next-generation version of SNMP.
SNMP challenges
Telemetry Explanation
Against this background, a concept called Telemetry was born as a new means to replace SNMP. Google, the center of development, lists the following as Telemetry’s Framework Requirements:
-
- Network device sends Data to Collector in stream format (Push model)
- Publish/Subscribe model, select arbitrary Data, and declare Subscribe
- Data model is Vendor neutral or Open-config
- Technology that can withstand data increase in the next 10 years
Telemetry Data type
-
- Periodic transmission type: “Example” Send all interface information every 10 seconds
- Event trigger type: “Example ” When a specific LSP goes down, the status is sent.
- Operator request type: [Example] Any request on the operator’s side is used as a trigger to send
Now, let’s take a look at some of the technical elements that are important in meeting the above requirements.
gRPC (Google Remote Procedure Call)
gRPC is a multi-platform RPC Framework with the following features.
-
- Load balance, application-level flow control, call canceling
- Supports bi-directional streams and server push
- Multi-platform (supports multiple languages)
- Stream connection multiplexing
- Open source
From these functions, it is possible to use HTTP/2 as if it were a transport layer that operates independently (by using gRPC), and on top of that, information can be obtained by RPC (Remote Procedure Call) increase. In addition, since it was originally a protocol aimed at improving the efficiency of communication between components in a distributed computing environment, weight reduction as a protocol and rapid response is emphasized.
* These days, when Micro-Service is attracting attention, rapid communication between components is very important.
GPB (Google Protocol Buffers)
OpenConfig
Final comparison of Telemetry and SNMP
Now, let’s take a last look at the differences between Telemetry and SNMP.
SNMP uses the polling method, which requests information each time information is acquired, but Telemetry uses the subscription method. Regarding transport, SNMP is a UDP-only implementation, but Telemetry uses gRPC in addition to UDP/TCP and uses a flow-controlled transport layer. SNMP uses ASN.1 BER for encoding, but Telemetry uses GPB, which is much lighter. In addition, by adopting OpenConfig for the data model, it is possible to obtain various information from the device with a common data model that does not depend on the vendor. Performance-wise, there are also noticeable differences between SNMP and Telemetry.
Sign up for a live demo of our Network & Service Management Solution
Feel free to sign up for a live demo of StableNet®. If you are looking for an efficient and secure monitoring platform that can also manage your multi-vendor and -technology network infrastructure through a single GUI, StableNet® may be the right choice for you.

Software
Made in Germany